1421 lines
59 KiB
Markdown
1421 lines
59 KiB
Markdown
This is a guide to using [YubiKey](https://www.yubico.com/faq/yubikey/) as a [SmartCard](https://security.stackexchange.com/questions/38924/how-does-storing-gpg-ssh-private-keys-on-smart-cards-compare-to-plain-usb-drives) for storing GPG encryption and signing keys.
|
||
|
||
An authentication key can also be created for SSH and used with [gpg-agent](https://unix.stackexchange.com/questions/188668/how-does-gpg-agent-work/188813#188813).
|
||
|
||
Keys stored on a smartcard like YubiKey are non-exportable (as opposed to keys that are stored on disk) and are convenient for everyday use. Instead of having to remember and enter passphrases to unlock SSH/GPG keys, YubiKey needs only a physical touch after being unlocked with a PIN code - and all signing and encryption operations happen on the card, rather than in OS memory.
|
||
|
||
Programming YubiKey for GPG keys still lets you use its two slots - [OTP](https://www.yubico.com/faq/what-is-a-one-time-password-otp/) and [static password](https://www.yubico.com/products/services-software/personalization-tools/static-password/) modes, for example.
|
||
|
||
**New!** [Purse](https://github.com/drduh/Purse) is a password manager which can integrate with GPG on YubiKey.
|
||
|
||
If you have a comment or suggestion, please open an [issue](https://github.com/drduh/YubiKey-Guide/issues) on GitHub.
|
||
|
||
1. [Purchase YubiKey](#1-purchase-yubikey)
|
||
2. [Install required software](#2-install-required-software)
|
||
2.1 [Install - Linux](#21-install---linux)
|
||
2.2 [Install - macOS](#22-install---macos)
|
||
2.3 [Install - Windows](#23-install---windows)
|
||
3. [Creating keys](#3-creating-keys)
|
||
3.1 [Create temporary working directory for GPG](#31-create-temporary-working-directory-for-gpg)
|
||
3.2 [Create configuration](#32-create-configuration)
|
||
3.3 [Create master key](#33-create-master-key)
|
||
3.4 [Save Key ID](#34-save-key-id)
|
||
3.5 [Create subkeys](#35-create-subkeys)
|
||
3.5a [Signing key](#35a-signing-key)
|
||
3.5b [Encryption key](#35b-encryption-key)
|
||
3.5c [Authentication key](#35c-authentication-key)
|
||
3.6 [Check your work](#36-check-your-work)
|
||
3.7 [Export keys](#37-export-keys)
|
||
3.7a [Linux/macOS](#37a-linuxmacos)
|
||
3.7b [Windows](#37b-windows)
|
||
3.8 [Backup everything](#38-backup-everything)
|
||
3.8a [Linux/macOS](#38a-linuxmacos)
|
||
3.8b [Windows](#38b-windows)
|
||
3.9 [Configure YubiKey](#39-configure-yubikey)
|
||
3.9a [Linux/macOS](#39a-linuxmacos)
|
||
3.9b [Windows](#39b-windows)
|
||
3.10 [Configure smartcard](#310-configure-smartcard)
|
||
3.10a [Change PINs](#310a-change-pins)
|
||
3.10b [Set card information](#310b-set-card-information)
|
||
3.11 [Transfer keys](#311-transfer-keys)
|
||
3.11a [Signature key](#311a-signature-key)
|
||
3.11b [Encryption key](#311b-encryption-key)
|
||
3.11c [Authentication key](#311c-authentication-key)
|
||
3.12 [Check your work](#312-check-your-work)
|
||
3.13 [Export public key](#313-export-public-key)
|
||
3.14 [Finish](#314-finish)
|
||
4. [Using keys](#4-using-keys)
|
||
4.1 [Create GPG configuration](#41-create-gpg-configuration)
|
||
4.2 [Import public key](#42-import-public-key)
|
||
4.3 [Insert YubiKey](#43-insert-yubikey)
|
||
4.4 [GnuPG](#44-gnupg)
|
||
4.4a [Trust master key](#44a-trust-master-key)
|
||
4.4b [Encryption](#44b-encryption)
|
||
4.4c [Decryption](#44c-decryption)
|
||
4.4d [Signing](#44d-signing)
|
||
4.4e [Verifying signature](#44e-verifying-signature)
|
||
4.5 [SSH - Linux/Mac](#45-ssh---linuxmacos)
|
||
4.5a [Update configuration](#45a-update-configuration)
|
||
4.5b [Replace ssh-agent with gpg-agent](#45b-replace-ssh-agent-with-gpg-agent)
|
||
4.5c [Copy public key to server](#45c-copy-public-key-to-server)
|
||
4.5d [Connect with public key authentication](#45d-connect-with-public-key-authentication)
|
||
4.6 [SSH - Windows](#46-ssh---windows)
|
||
4.6a [GitHub](#46a-github)
|
||
4.7 [Requiring touch to authenticate](#47-requiring-touch-to-authenticate)
|
||
4.8 [OpenBSD](#48-openbsd)
|
||
5. [Troubleshooting](#5-troubleshooting)
|
||
5.1 [Yubikey OTP Mode and cccccccc....](#51-yubikey-otp-mode-and-cccccccc)
|
||
6. [References and other work](#6-references-and-similar-work)
|
||
|
||
# 1. Purchase YubiKey
|
||
|
||
https://www.yubico.com/products/yubikey-hardware/
|
||
|
||
Consider purchasing a pair (or more) and programming both in case of loss or damage to one of them.
|
||
|
||
# 2. Install required software
|
||
|
||
These instructions are current to Debian 9 using YubiKey 4 - with support for **4096 bit** RSA keys - in OTP+CCID mode, using GPG version 2.2. Note, older YubiKeys like the Neo are [limited](https://www.yubico.com/products/yubikey-hardware/compare-yubikeys/) to **2048 bit** RSA keys.
|
||
|
||
For improved security, use a live GNU/Linux distribution like [Tails](https://tails.boum.org/index.en.html) or [Debian Live](https://www.debian.org/CD/live/) - with no connection to outgoing Internet.
|
||
|
||
## 2.1 Install - Linux
|
||
|
||
You will need to install the following software:
|
||
|
||
$ sudo apt-get install -y \
|
||
gnupg2 gnupg-agent pinentry-curses scdaemon pcscd yubikey-personalization libusb-1.0-0-dev
|
||
|
||
You may also need to download and install more recent versions of [yubikey-personalization](https://developers.yubico.com/yubikey-personalization/Releases/) and [yubico-c](https://developers.yubico.com/yubico-c/Releases/):
|
||
|
||
```
|
||
$ curl -LfsOv https://developers.yubico.com/yubikey-personalization/Releases/ykpers-1.19.0.tar.gz
|
||
|
||
$ !!.sig
|
||
curl -LfsOv https://developers.yubico.com/yubikey-personalization/Releases/ykpers-1.19.0.tar.gz.sig
|
||
|
||
$ gpg yk*sig
|
||
gpg: assuming signed data in 'ykpers-1.19.0.tar.gz'
|
||
gpg: Signature made Tue Apr 24 01:29:05 2018 PDT
|
||
gpg: using RSA key 0xBCA00FD4B2168C0A
|
||
gpg: Can't check signature: No public key
|
||
|
||
$ gpg --recv 0xBCA00FD4B2168C0A
|
||
gpg: key 0xBCA00FD4B2168C0A: public key "Klas Lindfors <klas@yubico.com>" imported
|
||
gpg: marginals needed: 3 completes needed: 1 trust model: pgp
|
||
gpg: depth: 0 valid: 1 signed: 0 trust: 0-, 0q, 0n, 0m, 0f, 1u
|
||
gpg: Total number processed: 1
|
||
gpg: imported: 1
|
||
|
||
$ gpg yk*sig
|
||
gpg: assuming signed data in 'ykpers-1.19.0.tar.gz'
|
||
gpg: Signature made Tue Apr 24 01:29:05 2018 PDT
|
||
gpg: using RSA key 0xBCA00FD4B2168C0A
|
||
gpg: Good signature from "Klas Lindfors <klas@yubico.com>" [unknown]
|
||
gpg: WARNING: This key is not certified with a trusted signature!
|
||
gpg: There is no indication that the signature belongs to the owner.
|
||
Primary key fingerprint: 0A3B 0262 BCA1 7053 07D5 FF06 BCA0 0FD4 B216 8C0A
|
||
|
||
$ curl -LfsOv https://developers.yubico.com/yubico-c/Releases/libyubikey-1.13.tar.gz
|
||
|
||
$ !!.sig
|
||
curl -LfsOv https://developers.yubico.com/yubico-c/Releases/libyubikey-1.13.tar.gz.sig
|
||
|
||
$ gpg libyubi*sig
|
||
gpg: assuming signed data in 'libyubikey-1.13.tar.gz'
|
||
gpg: Signature made Thu Mar 5 03:51:51 2015 PST
|
||
gpg: using RSA key 0xBCA00FD4B2168C0A
|
||
gpg: Good signature from "Klas Lindfors <klas@yubico.com>" [unknown]
|
||
gpg: WARNING: This key is not certified with a trusted signature!
|
||
gpg: There is no indication that the signature belongs to the owner.
|
||
Primary key fingerprint: 0A3B 0262 BCA1 7053 07D5 FF06 BCA0 0FD4 B216 8C0A
|
||
|
||
$ tar xf libyubikey-1.13.tar.gz
|
||
|
||
$ cd libyubikey-1.13
|
||
|
||
$ ./configure && make && sudo make install
|
||
|
||
$ cd ..
|
||
|
||
$ tar xf ykpers-1.19.0.tar.gz
|
||
|
||
$ cd ykpers-1.19.0
|
||
|
||
$ ./configure && make && sudo make install
|
||
|
||
$ sudo ldconfig
|
||
```
|
||
|
||
If on [Tails](https://tails.boum.org/), you also need to install `libykpers-1-1` from the testing repository. This is a temporary fix suggested on a [securedrop issue](https://github.com/freedomofpress/securedrop/issues/1035):
|
||
|
||
```
|
||
$ sudo apt-get install -t testing libykpers-1-1
|
||
```
|
||
|
||
## 2.2 Install - macOS
|
||
|
||
You will need to install [Homebrew](https://brew.sh/) and the following brew packages:
|
||
|
||
```
|
||
$ brew install gnupg yubikey-personalization hopenpgp-tools ykman pinentry-mac
|
||
```
|
||
|
||
## 2.3 Install - windows
|
||
|
||
Download and install [Gpg4Win](https://www.gpg4win.org/). If you are interested in
|
||
using your YubiKey for SSH authentication you should also install [PuTTY](https://putty.org).
|
||
|
||
Skip to [3.3](#3.3-create-master-key)
|
||
|
||
# 3. Creating keys
|
||
|
||
## 3.1 Create temporary working directory for GPG
|
||
|
||
Create a directory in `/tmp` which won't survive a [reboot](https://serverfault.com/questions/377348/when-does-tmp-get-cleared):
|
||
|
||
```
|
||
$ export GNUPGHOME=$(mktemp -d) ; echo $GNUPGHOME
|
||
/tmp/tmp.aaiTTovYgo
|
||
```
|
||
|
||
## 3.2 Create configuration
|
||
|
||
Paste the following [text](https://stackoverflow.com/questions/2500436/how-does-cat-eof-work-in-bash) into a terminal window to create a [recommended](https://github.com/drduh/config/blob/master/gpg.conf) GPG configuration:
|
||
|
||
```
|
||
$ cat << EOF > $GNUPGHOME/gpg.conf
|
||
use-agent
|
||
personal-cipher-preferences AES256 AES192 AES CAST5
|
||
personal-digest-preferences SHA512 SHA384 SHA256 SHA224
|
||
default-preference-list SHA512 SHA384 SHA256 SHA224 AES256 AES192 AES CAST5 ZLIB BZIP2 ZIP Uncompressed
|
||
cert-digest-algo SHA512
|
||
s2k-digest-algo SHA512
|
||
s2k-cipher-algo AES256
|
||
charset utf-8
|
||
fixed-list-mode
|
||
no-comments
|
||
no-emit-version
|
||
keyid-format 0xlong
|
||
list-options show-uid-validity
|
||
verify-options show-uid-validity
|
||
with-fingerprint
|
||
EOF
|
||
```
|
||
|
||
## 3.3 Create master key
|
||
|
||
> A note on security: for optimal security you should consider performing these actions on a bootable USB that you securely erase after completing the guide. Alternatively you should disable network connectivity on your computer and make sure you securely delete all secret keys and revocation certificates.
|
||
|
||
> A note on key expiry: setting an expiry essentially forces you to manage your subkeys and announces to the rest of the world that you are doing so. Setting an expiry on a primary key is ineffective for protecting the key from loss - whoever has the primary key can simply extend its expiry period. Revocation certificates are [better suited](https://security.stackexchange.com/questions/14718/does-openpgp-key-expiration-add-to-security/79386#79386) for this purpose. It may be appropriate for your use case to set expiry dates on subkeys.
|
||
|
||
Generate a new key with GPG, selecting RSA (sign only) and the appropriate key-size:
|
||
|
||
% gpg --full-generate-key
|
||
gpg (GnuPG) 2.2.1; Copyright (C) 2017 Free Software Foundation, Inc.
|
||
This is free software: you are free to change and redistribute it.
|
||
There is NO WARRANTY, to the extent permitted by law.
|
||
|
||
Please select what kind of key you want:
|
||
(1) RSA and RSA (default)
|
||
(2) DSA and Elgamal
|
||
(3) DSA (sign only)
|
||
(4) RSA (sign only)
|
||
Your selection? 4
|
||
RSA keys may be between 1024 and 4096 bits long.
|
||
What keysize do you want? (2048) 4096
|
||
Requested keysize is 4096 bits
|
||
Please specify how long the key should be valid.
|
||
0 = key does not expire
|
||
<n> = key expires in n days
|
||
<n>w = key expires in n weeks
|
||
<n>m = key expires in n months
|
||
<n>y = key expires in n years
|
||
Key is valid for? (0) 0
|
||
Key does not expire at all
|
||
Is this correct? (y/N) y
|
||
|
||
GnuPG needs to construct a user ID to identify your key.
|
||
|
||
Real name: Dr Duh
|
||
Email address: doc@duh.to
|
||
Comment:
|
||
You selected this USER-ID:
|
||
"Dr Duh <doc@duh.to>"
|
||
|
||
Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? o
|
||
|
||
*You'll be prompted to enter and verify a passphrase. Keep the passphrase handy
|
||
as you'll need it throughout.*
|
||
|
||
We need to generate a lot of random bytes. It is a good idea to perform
|
||
some other action (type on the keyboard, move the mouse, utilize the
|
||
disks) during the prime generation; this gives the random number
|
||
generator a better chance to gain enough entropy.
|
||
gpg: /tmp.FLZC0xcM/trustdb.gpg: trustdb created
|
||
gpg: key 0xFF3E7D88647EBCDB marked as ultimately trusted
|
||
gpg: directory '/tmp.FLZC0xcM/openpgp-revocs.d' created
|
||
gpg: revocation certificate stored as '/tmp.FLZC0xcM/openpgp-revocs.d/011CE16BD45B27A55BA8776DFF3E7D88647EBCDB.rev'
|
||
public and secret key created and signed.
|
||
|
||
Note that this key cannot be used for encryption. You may want to use
|
||
the command "--edit-key" to generate a subkey for this purpose.
|
||
pub rsa4096/0xFF3E7D88647EBCDB 2017-10-09 [SC]
|
||
Key fingerprint = 011C E16B D45B 27A5 5BA8 776D FF3E 7D88 647E BCDB
|
||
uid Dr Duh <doc@duh.to>
|
||
|
||
|
||
Note that as of [v2.1](https://www.gnupg.org/faq/whats-new-in-2.1.html#autorev), gpg automatically generates a revocation certificate.
|
||
|
||
### 3.4 Save Key ID
|
||
|
||
Export the key ID as a [variable](https://stackoverflow.com/questions/1158091/defining-a-variable-with-or-without-export/1158231#1158231) for use throughout:
|
||
|
||
```
|
||
$ export KEYID=0xFF3E7D88647EBCDB
|
||
```
|
||
|
||
### 3.5 Create subkeys
|
||
|
||
Note: If using a Yubikey 4, please use **4096 bit** as the size for the subkeys; if using a YubiKey Neo, please use **2048 bit** as the size for the subkeys.
|
||
|
||
Edit the key to add subkeys:
|
||
|
||
$ gpg --expert --edit-key $KEYID
|
||
|
||
Secret key is available.
|
||
|
||
sec rsa4096/0xEA5DE91459B80592
|
||
created: 2017-10-09 expires: never usage: SC
|
||
trust: ultimate validity: ultimate
|
||
[ultimate] (1). Dr Duh <doc@duh.to>
|
||
|
||
|
||
### 3.5a Signing key
|
||
|
||
First, create a [signing key](https://stackoverflow.com/questions/5421107/can-rsa-be-both-used-as-encryption-and-signature/5432623#5432623), selecting RSA (sign only):
|
||
|
||
gpg> addkey
|
||
Key is protected.
|
||
|
||
You need a passphrase to unlock the secret key for
|
||
user: "Dr Duh <doc@duh.to>"
|
||
4096-bit RSA key, ID 0xFF3E7D88647EBCDB, created 2016-05-24
|
||
|
||
Please select what kind of key you want:
|
||
(3) DSA (sign only)
|
||
(4) RSA (sign only)
|
||
(5) Elgamal (encrypt only)
|
||
(6) RSA (encrypt only)
|
||
(7) DSA (set your own capabilities)
|
||
(8) RSA (set your own capabilities)
|
||
Your selection? 4
|
||
RSA keys may be between 1024 and 4096 bits long.
|
||
What keysize do you want? (2048) 4096
|
||
Requested keysize is 4096 bits
|
||
Please specify how long the key should be valid.
|
||
0 = key does not expire
|
||
<n> = key expires in n days
|
||
<n>w = key expires in n weeks
|
||
<n>m = key expires in n months
|
||
<n>y = key expires in n years
|
||
Key is valid for? (0) 0
|
||
Key does not expire at all
|
||
Is this correct? (y/N) y
|
||
Really create? (y/N) y
|
||
We need to generate a lot of random bytes. It is a good idea to perform
|
||
some other action (type on the keyboard, move the mouse, utilize the
|
||
disks) during the prime generation; this gives the random number
|
||
generator a better chance to gain enough entropy.
|
||
|
||
sec rsa4096/0xFF3E7D88647EBCDB
|
||
created: 2017-10-09 expires: never usage: SC
|
||
trust: ultimate validity: ultimate
|
||
ssb rsa4096/0xBECFA3C1AE191D15
|
||
created: 2017-10-09 expires: never usage: S
|
||
[ultimate] (1). Dr Duh <doc@duh.to>
|
||
|
||
### 3.5b Encryption key
|
||
|
||
Next, create an [encryption key](https://www.cs.cornell.edu/courses/cs5430/2015sp/notes/rsa_sign_vs_dec.php), selecting RSA (encrypt only):
|
||
|
||
gpg> addkey
|
||
Please select what kind of key you want:
|
||
(3) DSA (sign only)
|
||
(4) RSA (sign only)
|
||
(5) Elgamal (encrypt only)
|
||
(6) RSA (encrypt only)
|
||
(7) DSA (set your own capabilities)
|
||
(8) RSA (set your own capabilities)
|
||
(10) ECC (sign only)
|
||
(11) ECC (set your own capabilities)
|
||
(12) ECC (encrypt only)
|
||
(13) Existing key
|
||
Your selection? 6
|
||
RSA keys may be between 1024 and 4096 bits long.
|
||
What keysize do you want? (2048) 4096
|
||
Requested keysize is 4096 bits
|
||
Please specify how long the key should be valid.
|
||
0 = key does not expire
|
||
<n> = key expires in n days
|
||
<n>w = key expires in n weeks
|
||
<n>m = key expires in n months
|
||
<n>y = key expires in n years
|
||
Key is valid for? (0) 0
|
||
Key does not expire at all
|
||
Is this correct? (y/N) y
|
||
Really create? (y/N) y
|
||
We need to generate a lot of random bytes. It is a good idea to perform
|
||
some other action (type on the keyboard, move the mouse, utilize the
|
||
disks) during the prime generation; this gives the random number
|
||
generator a better chance to gain enough entropy.
|
||
|
||
sec rsa4096/0xFF3E7D88647EBCDB
|
||
created: 2017-10-09 expires: never usage: SC
|
||
trust: ultimate validity: ultimate
|
||
ssb rsa4096/0xBECFA3C1AE191D15
|
||
created: 2017-10-09 expires: never usage: S
|
||
ssb rsa4096/0x5912A795E90DD2CF
|
||
created: 2017-10-09 expires: never usage: E
|
||
[ultimate] (1). Dr Duh <doc@duh.to>
|
||
|
||
### 3.5c Authentication key
|
||
|
||
Finally, create an [authentication key](https://superuser.com/questions/390265/what-is-a-gpg-with-authenticate-capability-used-for).
|
||
|
||
GPG doesn't provide a 'RSA (authenticate only)' key type out of the box, so select 'RSA (set your own capabilities)' and toggle the required capabilities to end up with an Authenticate-only key:
|
||
|
||
gpg> addkey
|
||
Please select what kind of key you want:
|
||
(3) DSA (sign only)
|
||
(4) RSA (sign only)
|
||
(5) Elgamal (encrypt only)
|
||
(6) RSA (encrypt only)
|
||
(7) DSA (set your own capabilities)
|
||
(8) RSA (set your own capabilities)
|
||
(10) ECC (sign only)
|
||
(11) ECC (set your own capabilities)
|
||
(12) ECC (encrypt only)
|
||
(13) Existing key
|
||
Your selection? 8
|
||
|
||
Possible actions for a RSA key: Sign Encrypt Authenticate
|
||
Current allowed actions: Sign Encrypt
|
||
|
||
(S) Toggle the sign capability
|
||
(E) Toggle the encrypt capability
|
||
(A) Toggle the authenticate capability
|
||
(Q) Finished
|
||
|
||
Your selection? S
|
||
|
||
Possible actions for a RSA key: Sign Encrypt Authenticate
|
||
Current allowed actions: Encrypt
|
||
|
||
(S) Toggle the sign capability
|
||
(E) Toggle the encrypt capability
|
||
(A) Toggle the authenticate capability
|
||
(Q) Finished
|
||
|
||
Your selection? E
|
||
|
||
Possible actions for a RSA key: Sign Encrypt Authenticate
|
||
Current allowed actions:
|
||
|
||
(S) Toggle the sign capability
|
||
(E) Toggle the encrypt capability
|
||
(A) Toggle the authenticate capability
|
||
(Q) Finished
|
||
|
||
Your selection? A
|
||
|
||
Possible actions for a RSA key: Sign Encrypt Authenticate
|
||
Current allowed actions: Authenticate
|
||
|
||
(S) Toggle the sign capability
|
||
(E) Toggle the encrypt capability
|
||
(A) Toggle the authenticate capability
|
||
(Q) Finished
|
||
|
||
Your selection? q
|
||
RSA keys may be between 1024 and 4096 bits long.
|
||
What keysize do you want? (2048) 4096
|
||
Requested keysize is 4096 bits
|
||
Please specify how long the key should be valid.
|
||
0 = key does not expire
|
||
<n> = key expires in n days
|
||
<n>w = key expires in n weeks
|
||
<n>m = key expires in n months
|
||
<n>y = key expires in n years
|
||
Key is valid for? (0) 0
|
||
Key does not expire at all
|
||
Is this correct? (y/N) y
|
||
Really create? (y/N) y
|
||
We need to generate a lot of random bytes. It is a good idea to perform
|
||
some other action (type on the keyboard, move the mouse, utilize the
|
||
disks) during the prime generation; this gives the random number
|
||
generator a better chance to gain enough entropy.
|
||
|
||
|
||
sec rsa4096/0xFF3E7D88647EBCDB
|
||
created: 2017-10-09 expires: never usage: SC
|
||
trust: ultimate validity: ultimate
|
||
ssb rsa4096/0xBECFA3C1AE191D15
|
||
created: 2017-10-09 expires: never usage: S
|
||
ssb rsa4096/0x5912A795E90DD2CF
|
||
created: 2017-10-09 expires: never usage: E
|
||
ssb rsa4096/0x3F29127E79649A3D
|
||
created: 2017-10-09 expires: never usage: A
|
||
[ultimate] (1). Dr Duh <doc@duh.to>
|
||
|
||
gpg> save
|
||
|
||
## 3.6 Check your work
|
||
|
||
List your new secret keys:
|
||
|
||
$ gpg --list-secret-keys
|
||
/tmp.FLZC0xcM/pubring.kbx
|
||
-------------------------------------------------------------------------
|
||
sec rsa4096/0xFF3E7D88647EBCDB 2017-10-09 [SC]
|
||
Key fingerprint = 011C E16B D45B 27A5 5BA8 776D FF3E 7D88 647E BCDB
|
||
uid Dr Duh <doc@duh.to>
|
||
ssb rsa4096/0xBECFA3C1AE191D15 2017-10-09 [S]
|
||
ssb rsa4096/0x5912A795E90DD2CF 2017-10-09 [E]
|
||
ssb rsa4096/0x3F29127E79649A3D 2017-10-09 [A]
|
||
|
||
Verify with OpenPGP key checks:
|
||
|
||
If you're on Linux or macOS, use the automated [key best practice checker](https://riseup.net/en/security/message-security/openpgp/best-practices#openpgp-key-checks):
|
||
|
||
```
|
||
$ sudo apt-get install hopenpgp-tools
|
||
$ gpg --export $KEYID | hokey lint
|
||
```
|
||
|
||
The output will display any problems with your key in red text. If everything is green, your key passes each of the tests. If it is red, your key has failed one of the tests.
|
||
|
||
>hokey may warn (orange text) about cross certification for the authentication key. GPG's [Signing Subkey Cross-Certification](https://gnupg.org/faq/subkey-cross-certify.html) documentation has more detail on cross certification, and gpg v2.2.1 notes "subkey <keyid> does not sign and so does not need to be cross-certified".
|
||
|
||
## 3.7 Export keys
|
||
|
||
### 3.7a Linux/macOS
|
||
|
||
Save a copy of your keys:
|
||
|
||
```
|
||
$ gpg --armor --export-secret-keys $KEYID > $GNUPGHOME/mastersub.key
|
||
$ gpg --armor --export-secret-subkeys $KEYID > $GNUPGHOME/sub.key
|
||
```
|
||
|
||
The exported (primary) key will still have the passphrase in place.
|
||
|
||
In addition to the backup below, you might want to keep a separate copy of the
|
||
revocation certificate in a safe place - `$GNUPGHOME/openpgp-revocs.d/<key fingerprint>.rev`
|
||
|
||
### 3.7b Windows
|
||
|
||
```
|
||
$ gpg --armor --export-secret-keys $KEYID -o \path\to\dir\mastersub.gpg
|
||
$ gpg --armor --export-secret-subkeys $KEYID -o \path\to\dir\sub.gpg
|
||
```
|
||
|
||
Please note that using any extension other than .gpg or attempting IO redirection to a file will garble your secret key, making it impossible to import it again at a later date.
|
||
|
||
The exported (primary) key will still have the passphrase in place.
|
||
|
||
In addition to the back up detailed in the next step, you should note the location of your revocation certificate from the terminal output and copy it to a secure location. Careful, anyone that has this certificate can revoke your key!
|
||
|
||
## 3.8 Backup everything
|
||
|
||
### 3.8a Linux/macOS
|
||
|
||
Once keys are moved to hardware, they cannot be extracted again, so make sure you have made an **encrypted** backup before proceeding.
|
||
|
||
Also consider using a [paper copy](http://www.jabberwocky.com/software/paperkey/) of the keys as an additional backup measure.
|
||
|
||
You can also use the pre-compiled executables available at [veracrypt.fr](https://www.veracrypt.fr/en/Downloads.html)
|
||
|
||
To format and encrypt a USB drive on Linux, first attach it and check its label:
|
||
|
||
$ dmesg | tail
|
||
[ 7667.607011] scsi8 : usb-storage 2-1:1.0
|
||
[ 7667.608766] usbcore: registered new interface driver usb-storage
|
||
[ 7668.874016] scsi 8:0:0:0: USB 0: 0 ANSI: 6
|
||
[ 7668.874242] sd 8:0:0:0: Attached scsi generic sg4 type 0
|
||
[ 7668.874682] sd 8:0:0:0: [sde] 62980096 512-byte logical blocks: (32.2 GB/30.0 GiB)
|
||
[ 7668.875022] sd 8:0:0:0: [sde] Write Protect is off
|
||
[ 7668.875023] sd 8:0:0:0: [sde] Mode Sense: 43 00 00 00
|
||
[ 7668.877939] sde: sde1
|
||
[ 7668.879514] sd 8:0:0:0: [sde] Attached SCSI removable disk
|
||
|
||
Check the size to make sure it's the right drive:
|
||
|
||
$ sudo fdisk -l | grep /dev/sde
|
||
Disk /dev/sde: 30 GiB, 32245809152 bytes, 62980096 sectors
|
||
/dev/sde1 2048 62980095 62978048 30G 6 FAT16
|
||
|
||
Erase and create a new partition table:
|
||
|
||
$ sudo fdisk /dev/sde
|
||
|
||
Welcome to fdisk (util-linux 2.25.2).
|
||
Changes will remain in memory only, until you decide to write them.
|
||
Be careful before using the write command.
|
||
|
||
Command (m for help): o
|
||
Created a new DOS disklabel with disk identifier 0xeac7ee35.
|
||
|
||
Command (m for help): w
|
||
The partition table has been altered.
|
||
Calling ioctl() to re-read partition table.
|
||
Syncing disks.
|
||
|
||
Remove and reinsert the USB drive, then create a new partition, selecting defaults:
|
||
|
||
$ sudo fdisk /dev/sde
|
||
|
||
Welcome to fdisk (util-linux 2.25.2).
|
||
Changes will remain in memory only, until you decide to write them.
|
||
Be careful before using the write command.
|
||
|
||
Command (m for help): n
|
||
Partition type
|
||
p primary (0 primary, 0 extended, 4 free)
|
||
e extended (container for logical partitions)
|
||
Select (default p): p
|
||
Partition number (1-4, default 1): 1
|
||
First sector (2048-62980095, default 2048):
|
||
Last sector, +sectors or +size{K,M,G,T,P} (2048-62980095, default 62980095):
|
||
|
||
Created a new partition 1 of type 'Linux' and of size 30 GiB.
|
||
Command (m for help): w
|
||
The partition table has been altered.
|
||
Calling ioctl() to re-read partition table.
|
||
Syncing disks.
|
||
|
||
Use [LUKS](https://askubuntu.com/questions/97196/how-secure-is-an-encrypted-luks-filesystem) to encrypt the new partition:
|
||
|
||
$ sudo cryptsetup luksFormat /dev/sde1
|
||
|
||
WARNING!
|
||
========
|
||
This will overwrite data on /dev/sde1 irrevocably.
|
||
|
||
Are you sure? (Type uppercase yes): YES
|
||
Enter passphrase:
|
||
Verify passphrase:
|
||
|
||
Mount the partition:
|
||
|
||
$ sudo cryptsetup luksOpen /dev/sde1 encrypted-usb
|
||
Enter passphrase for /dev/sde1:
|
||
|
||
Create a filesystem:
|
||
|
||
$ sudo mkfs.ext4 /dev/mapper/encrypted-usb -L encrypted-usb
|
||
mke2fs 1.42.12 (29-Aug-2014)
|
||
Creating filesystem with 7871744 4k blocks and 1970416 inodes
|
||
Superblock backups stored on blocks:
|
||
32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632, 2654208,
|
||
4096000
|
||
|
||
Allocating group tables: done
|
||
Writing inode tables: done
|
||
Creating journal (32768 blocks): done
|
||
Writing superblocks and filesystem accounting information: done
|
||
|
||
Mount the filesystem:
|
||
|
||
$ sudo mkdir /mnt/usb
|
||
$ sudo mount /dev/mapper/encrypted-usb /mnt/usb
|
||
|
||
Copy files to it:
|
||
|
||
$ sudo cp -avi $GNUPGHOME /mnt/usb
|
||
‘/tmp/tmp.aaiTTovYgo’ -> ‘/mnt/usb/tmp.aaiTTovYgo’
|
||
‘/tmp/tmp.aaiTTovYgo/revoke.txt’ -> ‘/mnt/usb/tmp.aaiTTovYgo/revoke.txt’
|
||
‘/tmp/tmp.aaiTTovYgo/gpg.conf’ -> ‘/mnt/usb/tmp.aaiTTovYgo/gpg.conf’
|
||
‘/tmp/tmp.aaiTTovYgo/trustdb.gpg’ -> ‘/mnt/usb/tmp.aaiTTovYgo/trustdb.gpg’
|
||
‘/tmp/tmp.aaiTTovYgo/random_seed’ -> ‘/mnt/usb/tmp.aaiTTovYgo/random_seed’
|
||
‘/tmp/tmp.aaiTTovYgo/master.key’ -> ‘/mnt/usb/tmp.aaiTTovYgo/master.key’
|
||
‘/tmp/tmp.aaiTTovYgo/secring.gpg’ -> ‘/mnt/usb/tmp.aaiTTovYgo/secring.gpg’
|
||
‘/tmp/tmp.aaiTTovYgo/mastersub.key’ -> ‘/mnt/usb/tmp.aaiTTovYgo/mastersub.key’
|
||
‘/tmp/tmp.aaiTTovYgo/sub.key’ -> ‘/mnt/usb/tmp.aaiTTovYgo/sub.key’
|
||
‘/tmp/tmp.aaiTTovYgo/pubring.gpg~’ -> ‘/mnt/usb/tmp.aaiTTovYgo/pubring.gpg~’
|
||
‘/tmp/tmp.aaiTTovYgo/pubring.gpg’ -> ‘/mnt/usb/tmp.aaiTTovYgo/pubring.gpg’
|
||
|
||
Keep the backup mounted if you plan on setting up two or more keys (as `keytocard` will [delete](https://lists.gnupg.org/pipermail/gnupg-users/2016-July/056353.html) the local copy on save).
|
||
|
||
Otherwise unmount and disconnected the encrypted USB drive:
|
||
|
||
$ sudo umount /mnt/usb
|
||
$ sudo cryptsetup luksClose encrypted-usb
|
||
|
||
### 3.8b Windows
|
||
|
||
An encrypted flash drive or container can be made using [VeraCrypt](https://www.veracrypt.fr/en/Downloads.html).
|
||
|
||
## 3.9 Configure YubiKey
|
||
|
||
### 3.9a Linux/macOS
|
||
|
||
YubiKey NEOs shipped after November 2015 have [all modes enabled](https://www.yubico.com/support/knowledge-base/categories/articles/yubikey-neo-manager/), skip to the next step.
|
||
|
||
Older versions of the YubiKey NEO may need to be reconfigured as a composite USB device (HID + CCID) which allows OTPs to be emitted while in use as a smart card.
|
||
|
||
Plug in your YubiKey and configure it:
|
||
|
||
$ ykpersonalize -m82
|
||
Firmware version 4.2.7 Touch level 527 Program sequence 4
|
||
|
||
The USB mode will be set to: 0x82
|
||
|
||
Commit? (y/n) [n]: y
|
||
|
||
> The -m option is the mode command. To see the different modes, enter `ykpersonalize –help`. Mode 82 (in hex) enables the YubiKey NEO as a composite USB device (HID + CCID). Once you have changed the mode, you need to re-boot the YubiKey – so remove and re-insert it.
|
||
|
||
> On YubiKey NEO with firmware version 3.3 or higher you can enable composite USB device with -m86 instead of -m82.
|
||
|
||
https://www.yubico.com/2012/12/yubikey-neo-openpgp/
|
||
https://www.yubico.com/2012/12/yubikey-neo-composite-device/
|
||
|
||
### 3.9b Windows
|
||
|
||
Use the [YubiKey NEO Manager](https://www.yubico.com/products/services-software/download/yubikey-neo-manager/) to enable CCID functionality.
|
||
|
||
## 3.10 Configure smartcard
|
||
|
||
Use GPG to configure YubiKey as a smartcard:
|
||
|
||
$ gpg --card-edit
|
||
Reader ...........: Yubico Yubikey 4 OTP U2F CCID
|
||
Application ID ...: D2760001240102010006055532110000
|
||
Version ..........: 2.1
|
||
Manufacturer .....: Yubico
|
||
Serial number ....: 05553211
|
||
Name of cardholder: [not set]
|
||
Language prefs ...: [not set]
|
||
Sex ..............: unspecified
|
||
URL of public key : [not set]
|
||
Login data .......: [not set]
|
||
Signature PIN ....: not forced
|
||
Key attributes ...: rsa4096 rsa4096 rsa4096
|
||
Max. PIN lengths .: 127 127 127
|
||
PIN retry counter : 3 3 3
|
||
Signature counter : 0
|
||
Signature key ....: [none]
|
||
Encryption key....: [none]
|
||
Authentication key: [none]
|
||
General key info..: [none]
|
||
|
||
### 3.10a Change PINs
|
||
|
||
The default PIN codes are `12345678` for the Admin PIN (aka PUK) and `123456` for the PIN. The CCID-mode PINs can be up to 127 ASCII characters long.
|
||
|
||
The Admin PIN is required for some card operations, and to unblock a PIN that has been entered incorrectly more than three times. See the GnuPG documentation on [Managing PINs](https://www.gnupg.org/howtos/card-howto/en/ch03s02.html) for details.
|
||
|
||
gpg/card> admin
|
||
Admin commands are allowed
|
||
|
||
gpg/card> passwd
|
||
gpg: OpenPGP card no. D2760001240102010006055532110000 detected
|
||
|
||
1 - change PIN
|
||
2 - unblock PIN
|
||
3 - change Admin PIN
|
||
4 - set the Reset Code
|
||
Q - quit
|
||
|
||
Your selection? 3
|
||
PIN changed.
|
||
|
||
1 - change PIN
|
||
2 - unblock PIN
|
||
3 - change Admin PIN
|
||
4 - set the Reset Code
|
||
Q - quit
|
||
|
||
Your selection? 1
|
||
PIN changed.
|
||
|
||
1 - change PIN
|
||
2 - unblock PIN
|
||
3 - change Admin PIN
|
||
4 - set the Reset Code
|
||
Q - quit
|
||
|
||
Your selection? q
|
||
|
||
### 3.10b Set card information
|
||
|
||
Some fields are optional:
|
||
|
||
gpg/card> name
|
||
Cardholder's surname: Duh
|
||
Cardholder's given name: Dr
|
||
|
||
gpg/card> lang
|
||
Language preferences: en
|
||
|
||
gpg/card> login
|
||
Login data (account name): doc@duh.to
|
||
|
||
gpg/card> (Press Enter)
|
||
|
||
Application ID ...: D2760001240102010006055532110000
|
||
Version ..........: 2.1
|
||
Manufacturer .....: unknown
|
||
Serial number ....: 05553211
|
||
Name of cardholder: Dr Duh
|
||
Language prefs ...: en
|
||
Sex ..............: unspecified
|
||
URL of public key : [not set]
|
||
Login data .......: doc@duh.to
|
||
Private DO 4 .....: [not set]
|
||
Signature PIN ....: not forced
|
||
Key attributes ...: 2048R 2048R 2048R
|
||
Max. PIN lengths .: 127 127 127
|
||
PIN retry counter : 3 3 3
|
||
Signature counter : 0
|
||
Signature key ....: [none]
|
||
Encryption key....: [none]
|
||
Authentication key: [none]
|
||
General key info..: [none]
|
||
|
||
gpg/card> quit
|
||
|
||
## 3.11 Transfer keys
|
||
|
||
Transferring keys to YubiKey hardware using `keytocard` is a one-way operation only, so make sure you've made a backup before proceeding.
|
||
|
||
Previous gpg versions required the `toggle` command before selecting keys. The currently selected key(s) are indicated with an `*`. When moving keys only one key should be selected at a time.
|
||
|
||
% gpg --edit-key $KEYID
|
||
|
||
Secret key is available.
|
||
|
||
sec rsa4096/0xFF3E7D88647EBCDB
|
||
created: 2017-10-09 expires: never usage: SC
|
||
trust: ultimate validity: ultimate
|
||
ssb rsa4096/0xBECFA3C1AE191D15
|
||
created: 2017-10-09 expires: never usage: S
|
||
ssb rsa4096/0x5912A795E90DD2CF
|
||
created: 2017-10-09 expires: never usage: E
|
||
ssb rsa4096/0x3F29127E79649A3D
|
||
created: 2017-10-09 expires: never usage: A
|
||
[ultimate] (1). Dr Duh <doc@duh.to>
|
||
|
||
### 3.11a Signature key
|
||
|
||
Select and move the signature key (you will be prompted for the key passphrase and admin PIN):
|
||
|
||
gpg> key 1
|
||
|
||
sec rsa4096/0xFF3E7D88647EBCDB
|
||
created: 2017-10-09 expires: never usage: SC
|
||
trust: ultimate validity: ultimate
|
||
ssb* rsa4096/0xBECFA3C1AE191D15
|
||
created: 2017-10-09 expires: never usage: S
|
||
ssb rsa4096/0x5912A795E90DD2CF
|
||
created: 2017-10-09 expires: never usage: E
|
||
ssb rsa4096/0x3F29127E79649A3D
|
||
created: 2017-10-09 expires: never usage: A
|
||
[ultimate] (1). Dr Duh <doc@duh.to>
|
||
|
||
gpg> keytocard
|
||
Please select where to store the key:
|
||
(1) Signature key
|
||
(3) Authentication key
|
||
Your selection? 1
|
||
|
||
You need a passphrase to unlock the secret key for
|
||
user: "Dr Duh <doc@duh.to>"
|
||
4096-bit RSA key, ID 0xBECFA3C1AE191D15, created 2016-05-24
|
||
|
||
### 3.11b Encryption key
|
||
|
||
Type `key 1` again to deselect and `key 2` to select the next key:
|
||
|
||
gpg> key 1
|
||
|
||
gpg> key 2
|
||
|
||
sec rsa4096/0xFF3E7D88647EBCDB
|
||
created: 2017-10-09 expires: never usage: SC
|
||
trust: ultimate validity: ultimate
|
||
ssb rsa4096/0xBECFA3C1AE191D15
|
||
created: 2017-10-09 expires: never usage: S
|
||
ssb* rsa4096/0x5912A795E90DD2CF
|
||
created: 2017-10-09 expires: never usage: E
|
||
ssb rsa4096/0x3F29127E79649A3D
|
||
created: 2017-10-09 expires: never usage: A
|
||
[ultimate] (1). Dr Duh <doc@duh.to>
|
||
|
||
gpg> keytocard
|
||
Please select where to store the key:
|
||
(2) Encryption key
|
||
Your selection? 2
|
||
...
|
||
|
||
### 3.11c Authentication key
|
||
|
||
Type `key 2` again to deselect and `key 3` to select the next key:
|
||
|
||
gpg> key 2
|
||
|
||
gpg> key 3
|
||
|
||
sec rsa4096/0xFF3E7D88647EBCDB
|
||
created: 2017-10-09 expires: never usage: SC
|
||
trust: ultimate validity: ultimate
|
||
ssb rsa4096/0xBECFA3C1AE191D15
|
||
created: 2017-10-09 expires: never usage: S
|
||
ssb rsa4096/0x5912A795E90DD2CF
|
||
created: 2017-10-09 expires: never usage: E
|
||
ssb* rsa4096/0x3F29127E79649A3D
|
||
created: 2017-10-09 expires: never usage: A
|
||
[ultimate] (1). Dr Duh <doc@duh.to>
|
||
|
||
gpg> keytocard
|
||
Please select where to store the key:
|
||
(3) Authentication key
|
||
Your selection? 3
|
||
|
||
Save and quit:
|
||
|
||
gpg> save
|
||
|
||
## 3.12 Check your work
|
||
|
||
`ssb>` indicates a stub to the private key on smartcard:
|
||
|
||
% gpg --list-secret-keys
|
||
/tmp.FLZC0xcM/pubring.kbx
|
||
-------------------------------------------------------------------------
|
||
sec rsa4096/0xFF3E7D88647EBCDB 2017-10-09 [SC]
|
||
Key fingerprint = 011C E16B D45B 27A5 5BA8 776D FF3E 7D88 647E BCDB
|
||
uid Dr Duh <doc@duh.to>
|
||
ssb> rsa4096/0xBECFA3C1AE191D15 2017-10-09 [S]
|
||
ssb> rsa4096/0x5912A795E90DD2CF 2017-10-09 [E]
|
||
ssb> rsa4096/0x3F29127E79649A3D 2017-10-09 [A]
|
||
|
||
|
||
## 3.13 Export public key
|
||
|
||
This file should be publicly shared:
|
||
|
||
**Linux/macOS**
|
||
|
||
$ gpg --armor --export $KEYID > /mnt/public-usb-key/pubkey.txt
|
||
|
||
**Windows**
|
||
|
||
$ gpg --armor --export $KEYID -o \path\to\dir\pubkey.gpg
|
||
|
||
|
||
Optionally, it may be uploaded to a [public keyserver](https://debian-administration.org/article/451/Submitting_your_GPG_key_to_a_keyserver):
|
||
|
||
$ gpg --send-key $KEYID
|
||
gpg: sending key 0xFF3E7D88647EBCDB to hkps server hkps.pool.sks-keyservers.net
|
||
[...]
|
||
|
||
After a little while, it ought to propagate to [other](https://pgp.key-server.io/pks/lookup?search=doc%40duh.to&fingerprint=on&op=vindex) [servers](https://pgp.mit.edu/pks/lookup?search=doc%40duh.to&op=index).
|
||
|
||
## 3.14 Finish
|
||
|
||
If all went well, you should now reboot or [securely delete](http://srm.sourceforge.net/) `$GNUPGHOME`.
|
||
|
||
If you are using Windows, the easiest way to remove the secret keys is to purge them from your GPG keyring.
|
||
|
||
$ gpg --delete-secret-key $KEYID
|
||
|
||
Make sure you backup up your key prior to doing this as the action is irreversible. You may also want to consider securely deleting the revocation certificate from your hard drive.
|
||
|
||
# 4. Using keys
|
||
|
||
## 4.1 Create GPG configuration
|
||
|
||
**Skip this section if you are on Windows**
|
||
|
||
Paste the following text into a terminal window to create a [recommended](https://github.com/drduh/config/blob/master/gpg.conf) GPG configuration:
|
||
|
||
$ cat << EOF > ~/.gnupg/gpg.conf
|
||
auto-key-locate keyserver
|
||
keyserver hkps://hkps.pool.sks-keyservers.net
|
||
keyserver-options no-honor-keyserver-url
|
||
keyserver-options no-honor-keyserver-url
|
||
personal-cipher-preferences AES256 AES192 AES CAST5
|
||
personal-digest-preferences SHA512 SHA384 SHA256 SHA224
|
||
default-preference-list SHA512 SHA384 SHA256 SHA224 AES256 AES192 AES CAST5 ZLIB BZIP2 ZIP Uncompressed
|
||
cert-digest-algo SHA512
|
||
s2k-cipher-algo AES256
|
||
s2k-digest-algo SHA512
|
||
charset utf-8
|
||
fixed-list-mode
|
||
no-comments
|
||
no-emit-version
|
||
keyid-format 0xlong
|
||
list-options show-uid-validity
|
||
verify-options show-uid-validity
|
||
with-fingerprint
|
||
use-agent
|
||
require-cross-certification
|
||
EOF
|
||
|
||
Ensure you change to correct rights of that file to at least avoid a warning message about incorrect file rights
|
||
|
||
chmod 600 ~/.gnupg/gpg.conf
|
||
|
||
## 4.2 Import public key
|
||
|
||
Import it from a file:
|
||
|
||
$ gpg --import < /mnt/public-usb-key/pubkey.txt
|
||
gpg: key 0xFF3E7D88647EBCDB: public key "Dr Duh <doc@duh.to>" imported
|
||
gpg: Total number processed: 1
|
||
gpg: imported: 1 (RSA: 1)
|
||
|
||
Or download from a keyserver:
|
||
|
||
$ gpg --recv 0xFF3E7D88647EBCDB
|
||
gpg: requesting key 0xFF3E7D88647EBCDB from hkps server hkps.pool.sks-keyservers.net
|
||
[...]
|
||
gpg: key 0xFF3E7D88647EBCDB: public key "Dr Duh <doc@duh.to>" imported
|
||
gpg: Total number processed: 1
|
||
gpg: imported: 1 (RSA: 1)
|
||
|
||
**Linux/macOS:** You may get an error `gpgkeys: HTTP fetch error 1: unsupported protocol` -- this means you need to install a special version of curl which supports gnupg:
|
||
|
||
$ sudo apt-get install gnupg-curl
|
||
|
||
## 4.3 Insert YubiKey
|
||
|
||
Unplug and replug the Yubikey. Check the card's status:
|
||
|
||
$ gpg --card-status
|
||
Application ID ...: D2760001240102010006055532110000
|
||
Version ..........: 2.1
|
||
Manufacturer .....: Yubico
|
||
Serial number ....: 05553211
|
||
Name of cardholder: Dr Duh
|
||
Language prefs ...: en
|
||
Sex ..............: unspecified
|
||
URL of public key : [not set]
|
||
Login data .......: doc@duh.to
|
||
Signature PIN ....: not forced
|
||
Key attributes ...: 4096R 4096R 4096R
|
||
Max. PIN lengths .: 127 127 127
|
||
PIN retry counter : 3 3 3
|
||
Signature counter : 0
|
||
Signature key ....: 07AA 7735 E502 C5EB E09E B8B0 BECF A3C1 AE19 1D15
|
||
created ....: 2016-05-24 23:22:01
|
||
Encryption key....: 6F26 6F46 845B BEB8 BDF3 7E9B 5912 A795 E90D D2CF
|
||
created ....: 2016-05-24 23:29:03
|
||
Authentication key: 82BE 7837 6A3F 2E7B E556 5E35 3F29 127E 7964 9A3D
|
||
created ....: 2016-05-24 23:36:40
|
||
General key info..: pub 4096R/0xBECFA3C1AE191D15 2016-05-24 Dr Duh <doc@duh.to>
|
||
sec# 4096R/0xFF3E7D88647EBCDB created: 2016-05-24 expires: never
|
||
ssb> 4096R/0xBECFA3C1AE191D15 created: 2016-05-24 expires: never
|
||
card-no: 0006 05553211
|
||
ssb> 4096R/0x5912A795E90DD2CF created: 2016-05-24 expires: never
|
||
card-no: 0006 05553211
|
||
ssb> 4096R/0x3F29127E79649A3D created: 2016-05-24 expires: never
|
||
card-no: 0006 05553211
|
||
|
||
`sec#` indicates master key is not available (as it should be stored encrypted offline).
|
||
|
||
**Note** If you see `General key info..: [none]` in the output instead, first import your public key using the previous step.
|
||
|
||
## 4.4 GnuPG
|
||
|
||
### 4.4a Trust master key
|
||
|
||
Edit the imported key to assign it ultimate trust:
|
||
|
||
$ gpg --edit-key 0xFF3E7D88647EBCDB
|
||
|
||
Secret key is available.
|
||
|
||
pub 4096R/0xFF3E7D88647EBCDB created: 2016-05-24 expires: never usage: SC
|
||
trust: unknown validity: unknown
|
||
sub 4096R/0xBECFA3C1AE191D15 created: 2016-05-24 expires: never usage: S
|
||
sub 4096R/0x5912A795E90DD2CF created: 2016-05-24 expires: never usage: E
|
||
sub 4096R/0x3F29127E79649A3D created: 2016-05-24 expires: never usage: A
|
||
[ unknown] (1). Dr Duh <doc@duh.to>
|
||
|
||
gpg> trust
|
||
pub 4096R/0xFF3E7D88647EBCDB created: 2016-05-24 expires: never usage: SC
|
||
trust: unknown validity: unknown
|
||
sub 4096R/0xBECFA3C1AE191D15 created: 2016-05-24 expires: never usage: S
|
||
sub 4096R/0x5912A795E90DD2CF created: 2016-05-24 expires: never usage: E
|
||
sub 4096R/0x3F29127E79649A3D created: 2016-05-24 expires: never usage: A
|
||
[ unknown] (1). Dr Duh <doc@duh.to>
|
||
|
||
Please decide how far you trust this user to correctly verify other users' keys
|
||
(by looking at passports, checking fingerprints from different sources, etc.)
|
||
|
||
1 = I don't know or won't say
|
||
2 = I do NOT trust
|
||
3 = I trust marginally
|
||
4 = I trust fully
|
||
5 = I trust ultimately
|
||
m = back to the main menu
|
||
|
||
Your decision? 5
|
||
Do you really want to set this key to ultimate trust? (y/N) y
|
||
|
||
pub 4096R/0xFF3E7D88647EBCDB created: 2016-05-24 expires: never usage: SC
|
||
trust: ultimate validity: unknown
|
||
sub 4096R/0xBECFA3C1AE191D15 created: 2016-05-24 expires: never usage: S
|
||
sub 4096R/0x5912A795E90DD2CF created: 2016-05-24 expires: never usage: E
|
||
sub 4096R/0x3F29127E79649A3D created: 2016-05-24 expires: never usage: A
|
||
[ unknown] (1). Dr Duh <doc@duh.to>
|
||
Please note that the shown key validity is not necessarily correct
|
||
unless you restart the program.
|
||
|
||
gpg> quit
|
||
|
||
### 4.4b Encryption
|
||
|
||
Encrypt some sample text:
|
||
|
||
**Note for Windows users:**
|
||
Replace `echo "$(uname -a)"` with `echo "Test123"`
|
||
|
||
$ echo "$(uname -a)" | gpg --encrypt --armor --recipient 0xFF3E7D88647EBCDB
|
||
-----BEGIN PGP MESSAGE-----
|
||
|
||
hQIMA1kSp5XpDdLPAQ/+JyYfLaUS/+llEzQaKDb5mWhG4HlUgD99dNJUXakm085h
|
||
PSSt3I8Ac0ctwyMnenZvBEbHMqdRnfZJsj5pHidKcAZrhgs+he+B1tdZ/KPa8inx
|
||
NIGqd8W1OraVSFmPEdC1kQ5he6R/WCDH1NNel9+fvLtQDCBQaFae/s3yXCSSQU6q
|
||
HKCJLyHK8K9hDvgFmXOY8j1qTknBvDbmYdcCKVE1ejgpUCi3WatusobpWozsp0+b
|
||
6DN8bXyfxLPYm1PTLfW7v4kwddktB8eVioV8A45lndJZvliSqDwxhrwyE5VGsArS
|
||
NmqzBkCaOHQFr0ofL91xgwpCI5kM2ukIR5SxUO4hvzlHn58QVL9GfAyCHMFtJs3o
|
||
Q9eiR0joo9TjTwR8XomVhRJShrrcPeGgu3YmIak4u7OndyBFpu2E79RQ0ehpl2gY
|
||
tSECB6mNd/gt0Wy3y15ccaFI4CVP6jrMN6q3YhXqNC7GgI/OWkVZIAgUFYnbmIQe
|
||
tQ3z3wlbvFFngeFy5IlhsPduK8T9XgPnOtgQxHaepKz0h3m2lJegmp4YZ4CbS9h6
|
||
kcBTUjys5Vin1SLuqL4PhErzmlAZgVzG2PANsnHYPe2hwN4NlFtOND1wgBCtBFBs
|
||
1pqz1I0O+jmyId+jVlAK076c2AwdkVbokKUcIT/OcTc0nwHjOUttJGmkUHlbt/nS
|
||
iAFNniSfzf6fwAFHgsvWiRJMa3keolPiqoUdh0tBIiI1zxOMaiTL7C9BFdpnvzYw
|
||
Krj0pDc7AlF4spWhm58WgAW20P8PGcVQcN6mSTG8jKbXVSP3bvgPXkpGAOLKMV/i
|
||
pLORcRPbauusBqovgaBWU/i3pMYrbhZ+LQbVEaJlvblWu6xe8HhS/jo=
|
||
=pzkv
|
||
-----END PGP MESSAGE-----
|
||
|
||
### 4.4c Decryption
|
||
|
||
Decrypt the sample text by pasting it:
|
||
|
||
$ gpg --decrypt --armor
|
||
-----BEGIN PGP MESSAGE-----
|
||
|
||
hQIMA1kSp5XpDdLPAQ/+JyYfLaUS/+llEzQaKDb5mWhG4HlUgD99dNJUXakm085h
|
||
PSSt3I8Ac0ctwyMnenZvBEbHMqdRnfZJsj5pHidKcAZrhgs+he+B1tdZ/KPa8inx
|
||
NIGqd8W1OraVSFmPEdC1kQ5he6R/WCDH1NNel9+fvLtQDCBQaFae/s3yXCSSQU6q
|
||
HKCJLyHK8K9hDvgFmXOY8j1qTknBvDbmYdcCKVE1ejgpUCi3WatusobpWozsp0+b
|
||
6DN8bXyfxLPYm1PTLfW7v4kwddktB8eVioV8A45lndJZvliSqDwxhrwyE5VGsArS
|
||
NmqzBkCaOHQFr0ofL91xgwpCI5kM2ukIR5SxUO4hvzlHn58QVL9GfAyCHMFtJs3o
|
||
Q9eiR0joo9TjTwR8XomVhRJShrrcPeGgu3YmIak4u7OndyBFpu2E79RQ0ehpl2gY
|
||
tSECB6mNd/gt0Wy3y15ccaFI4CVP6jrMN6q3YhXqNC7GgI/OWkVZIAgUFYnbmIQe
|
||
tQ3z3wlbvFFngeFy5IlhsPduK8T9XgPnOtgQxHaepKz0h3m2lJegmp4YZ4CbS9h6
|
||
kcBTUjys5Vin1SLuqL4PhErzmlAZgVzG2PANsnHYPe2hwN4NlFtOND1wgBCtBFBs
|
||
1pqz1I0O+jmyId+jVlAK076c2AwdkVbokKUcIT/OcTc0nwHjOUttJGmkUHlbt/nS
|
||
iAFNniSfzf6fwAFHgsvWiRJMa3keolPiqoUdh0tBIiI1zxOMaiTL7C9BFdpnvzYw
|
||
Krj0pDc7AlF4spWhm58WgAW20P8PGcVQcN6mSTG8jKbXVSP3bvgPXkpGAOLKMV/i
|
||
pLORcRPbauusBqovgaBWU/i3pMYrbhZ+LQbVEaJlvblWu6xe8HhS/jo=
|
||
=pzkv
|
||
-----END PGP MESSAGE-----
|
||
gpg: encrypted with 4096-bit RSA key, ID 0x5912A795E90DD2CF, created
|
||
2016-05-24
|
||
"Dr Duh <doc@duh.to>"
|
||
|
||
(Press Control-D)
|
||
|
||
Linux workstation 3.16.0-4-amd64 #1 SMP Debian 3.16.7-ckt25-2 (2016-04-08) x86_64 GNU/Linux
|
||
|
||
### 4.4d Signing
|
||
|
||
Sign some sample text using the signing subkey:
|
||
|
||
$ echo "$(uname -a)" | gpg --armor --clearsign --default-key 0xBECFA3C1AE191D15
|
||
-----BEGIN PGP SIGNED MESSAGE-----
|
||
Hash: SHA512
|
||
|
||
Linux workstation 3.16.0-4-amd64 #1 SMP Debian 3.16.7-ckt25-2 (2016-04-08) x86_64 GNU/Linux
|
||
-----BEGIN PGP SIGNATURE-----
|
||
|
||
iQIcBAEBCgAGBQJXRPo8AAoJEL7Po8GuGR0Vh8wP/jYXTR8SAZIZSMVCOyAjH37f
|
||
k6JxB0rF928WDYPihjo/d0Jd+XpoV1g+oipDRjP78xqR9H/CJZlE10IPQbNaomFs
|
||
+3RGxA3Zr085cVFoixI8rxYOSu0Vs2cAzAbJHNcOcD7vXxTHcX4T8kfKoF9A4U1u
|
||
XTJ42eEjpO0fX76tFX2/Uzxl43ES0dO7Y82ho7xcnaYwakVUEcWfUpfDAroLKZOs
|
||
wCZGr8Z64QDQzxQ9L45Zc61wMx9JEIWD4BnagllfeOYrEwTJfYG8uhDDNYx0jjJp
|
||
j1PBHn5d556aX6DHUH05kq3wszvQ4W40RctLgAA3l1VnEKebhBKjLZA/EePAvQV4
|
||
QM7MFUV1X/pi2zlyoZSnHkVl8b5Q7RU5ZtRpq9fdkDDepeiUo5PNBUMJER1gn4bm
|
||
ri8DtavkwTNWBRLnVR2gHBmVQNN7ZDOkHcfyqR4I9chx6TMpfcxk0zATAHh8Donp
|
||
FVPKySifuXpunn+0MwdZl5XkhHGdpdYQz4/LAZUGhrA9JTnFtc4cl4JrTzufF8Sr
|
||
c3JJumMsyGvw9OQKQHF8gHme4PBu/4P31LpfX9wzPOTpJaI31Sg5kdJLTo9M9Ppo
|
||
uvkmJS7ETjLQZOsRyAEn7gcEKZQGPQcNAgfEgQPoepS/KvvI68u+JMJm4n24k2kQ
|
||
fEkp501u8kAZkWauhiL+
|
||
=+ylJ
|
||
-----END PGP SIGNATURE-----
|
||
|
||
### 4.4e Verifying signature
|
||
|
||
Verify the previous signature:
|
||
|
||
$ gpg
|
||
gpg: Go ahead and type your message ...
|
||
-----BEGIN PGP SIGNED MESSAGE-----
|
||
Hash: SHA512
|
||
|
||
Linux workstation 3.16.0-4-amd64 #1 SMP Debian 3.16.7-ckt25-2 (2016-04-08) x86_64 GNU/Linux
|
||
-----BEGIN PGP SIGNATURE-----
|
||
|
||
iQIcBAEBCgAGBQJXRPo8AAoJEL7Po8GuGR0Vh8wP/jYXTR8SAZIZSMVCOyAjH37f
|
||
+3RGxA3Zr085cVFoixI8rxYOSu0Vs2cAzAbJHNcOcD7vXxTHcX4T8kfKoF9A4U1u
|
||
XTJ42eEjpO0fX76tFX2/Uzxl43ES0dO7Y82ho7xcnaYwakVUEcWfUpfDAroLKZOs
|
||
wCZGr8Z64QDQzxQ9L45Zc61wMx9JEIWD4BnagllfeOYrEwTJfYG8uhDDNYx0jjJp
|
||
j1PBHn5d556aX6DHUH05kq3wszvQ4W40RctLgAA3l1VnEKebhBKjLZA/EePAvQV4
|
||
QM7MFUV1X/pi2zlyoZSnHkVl8b5Q7RU5ZtRpq9fdkDDepeiUo5PNBUMJER1gn4bm
|
||
ri8DtavkwTNWBRLnVR2gHBmVQNN7ZDOkHcfyqR4I9chx6TMpfcxk0zATAHh8Donp
|
||
FVPKySifuXpunn+0MwdZl5XkhHGdpdYQz4/LAZUGhrA9JTnFtc4cl4JrTzufF8Sr
|
||
c3JJumMsyGvw9OQKQHF8gHme4PBu/4P31LpfX9wzPOTpJaI31Sg5kdJLTo9M9Ppo
|
||
uvkmJS7ETjLQZOsRyAEn7gcEKZQGPQcNAgfEgQPoepS/KvvI68u+JMJm4n24k2kQ
|
||
fEkp501u8kAZkWauhiL+
|
||
=+ylJ
|
||
-----END PGP SIGNATURE-----
|
||
|
||
(Press Control-D)
|
||
|
||
gpg: Signature made Wed 25 May 2016 00:00:00 AM UTC
|
||
gpg: using RSA key 0xBECFA3C1AE191D15
|
||
gpg: Good signature from "Dr Duh <doc@duh.to>" [ultimate]
|
||
Primary key fingerprint: 011C E16B D45B 27A5 5BA8 776D FF3E 7D88 647E BCDB
|
||
Subkey fingerprint: 07AA 7735 E502 C5EB E09E B8B0 BECF A3C1 AE19 1D15
|
||
|
||
## 4.5 SSH - Linux/macOS
|
||
|
||
### 4.5a A Note on GPG Agent's SSH Agent
|
||
|
||
[gpg-agent](https://wiki.archlinux.org/index.php/GnuPG#SSH_agent) supports the OpenSSH ssh-agent protocol, as well as Putty's Pageant on Windows. This means it can be used instead of the traditional ssh-agent / pageant. There are some differences from ssh-agent, notably that gpg-agent does not _cache_ keys rather it converts, encrypts and stores them - persistently - as GPG keys and then makes them available to ssh clients. Any existing ssh private keys that you'd like to keep in `gpg-agent` should be deleted once they've been imported to the GPG agent. When importing the key to `gpg-agent`, you'll be prompted for a passphrase to protect that key within GPG's key store - you may want to use the same passphrase as the original's ssh version. GPG can both cache passphrases for a determined period (ref. `gpg-agent`'s various `cache-ttl` options), and since version 2.1 can store and fetch passphrases via the macOS keychain. Note than when removing the old private key after importing to `gpg-agent`, keep the `.pub` key file around for use in specifying ssh identities (e.g. `ssh -i /path/to/identity.pub`).
|
||
|
||
Probably the biggest thing missing from `gpg-agent`'s ssh agent support is being able to remove keys. `ssh-add -d/-D` have no affect. Instead, you need to use the `gpg-connect-agent` utility to lookup a key's keygrip, match that with the desired ssh key fingerprint (as an MD5) and then delete that keygrip. The [gnupg-users mailing list](https://lists.gnupg.org/pipermail/gnupg-users/2016-August/056499.html) has more information.
|
||
|
||
### 4.5b Update configuration
|
||
|
||
Paste the following text into a terminal window to create a [recommended](https://github.com/drduh/config/blob/master/gpg-agent.conf) GPG agent configuration:
|
||
|
||
$ cat << EOF > ~/.gnupg/gpg-agent.conf
|
||
enable-ssh-support
|
||
pinentry-program /usr/bin/pinentry-curses
|
||
default-cache-ttl 60
|
||
max-cache-ttl 120
|
||
EOF
|
||
|
||
If you are using Linux on the desktop, you may want to use `/usr/bin/pinentry-gnome3` to use a GUI manager. For macOS, try `brew install pinentry-mac`, and adjust the `pinentry-program` setting to suit.
|
||
|
||
### 4.5c Replace ssh-agent with gpg-agent
|
||
|
||
To launch `gpg-agent` for use by ssh use the `gpg-connect-agent /bye` or `gpgconf --launch gpg-agent` commands.
|
||
|
||
Depending on how your environment is set up, you might need to add these to your shell `rc` file:
|
||
|
||
export GPG_TTY="$(tty)"
|
||
export SSH_AUTH_SOCK=$(gpgconf --list-dirs agent-ssh-socket)
|
||
gpgconf --launch gpg-agent
|
||
|
||
**Note** On some systems, for example Arch Linux-based distributions, you may need to replace the second and the third line with:
|
||
|
||
```
|
||
export SSH_AUTH_SOCK="/run/user/$UID/gnupg/S.gpg-agent.ssh"
|
||
gpg-connect-agent updatestartuptty /bye
|
||
```
|
||
|
||
### 4.5d Copy public key to server
|
||
|
||
There is a `-L` option of `ssh-add` that lists public key parameters of all identities currently represented by the agent. Copy and paste the following output to the server authorized_keys file:
|
||
|
||
```
|
||
$ ssh-add -L
|
||
ssh-rsa AAAAB4NzaC1yc2EAAAADAQABAAACAz[...]zreOKM+HwpkHzcy9DQcVG2Nw== cardno:000605553211
|
||
```
|
||
|
||
#### (Optional) Save public key for identity file configuration
|
||
|
||
If `IdentitiesOnly yes` is used in your `.ssh/config` (for example [to avoid being fingerprinted by untrusted ssh servers](https://blog.filippo.io/ssh-whoami-filippo-io/)), `ssh` will not automatically enumerate public keys loaded into `ssh-agent` or `gpg-agent`. This means `publickey` authentication will not proceed unless explicitly named by `ssh -i [identity_file]` or in `.ssh/config` on a per-host basis.
|
||
|
||
In the case of Yubikey usage, you do not have access to the private key, and `identity_file` can be pointed to the public key (`.pub`).
|
||
|
||
$ ssh-add -L | grep "cardno:000605553211" > ~/.ssh/id_rsa_yubikey.pub
|
||
|
||
Then, you can explicitly associate this Yubikey-stored key for used with the domain `github.com` (for example) as follows:
|
||
|
||
$ cat << EOF >> ~/.ssh/config
|
||
Host github.com
|
||
IdentityFile ~/.ssh/id_rsa_yubikey.pub
|
||
EOF
|
||
|
||
|
||
### 4.5e Connect with public key authentication
|
||
|
||
$ ssh git@github.com -vvv
|
||
[...]
|
||
debug2: key: cardno:000605553211 (0x1234567890),
|
||
debug1: Authentications that can continue: publickey
|
||
debug3: start over, passed a different list publickey
|
||
debug3: preferred gssapi-keyex,gssapi-with-mic,publickey,keyboard-interactive,password
|
||
debug3: authmethod_lookup publickey
|
||
debug3: remaining preferred: keyboard-interactive,password
|
||
debug3: authmethod_is_enabled publickey
|
||
debug1: Next authentication method: publickey
|
||
debug1: Offering RSA public key: cardno:000605553211
|
||
debug3: send_pubkey_test
|
||
debug2: we sent a publickey packet, wait for reply
|
||
debug1: Server accepts key: pkalg ssh-rsa blen 535
|
||
debug2: input_userauth_pk_ok: fp e5:de:a5:74:b1:3e:96:9b:85:46:e7:28:53:b4:82:c3
|
||
debug3: sign_and_send_pubkey: RSA e5:de:a5:74:b1:3e:96:9b:85:46:e7:28:53:b4:82:c3
|
||
debug1: Authentication succeeded (publickey).
|
||
[...]
|
||
|
||
|
||
**Note** To make multiple connections or securely transfer many files, consider using the [ControlMaster](https://en.wikibooks.org/wiki/OpenSSH/Cookbook/Multiplexing) ssh option. Also see [drduh/config/ssh_config](https://github.com/drduh/config/blob/master/ssh_config).
|
||
|
||
### 4.5f (Optional) Import SSH Keys to `gpg-agent`
|
||
|
||
If you have existing ssh keys that you wish to make available via `gpg-agent` you'll need to import them. You should then remove the original private keys. When importing the key, `gpg-agent` uses the key's filename as the key's label; this makes it easier to follow where the key originated from. In this example, we're starting with just the Yubikey's key in place and importing `~/.ssh/id_rsa`:
|
||
|
||
$ ssh-add -l
|
||
4096 SHA256:... cardno:00060123456 (RSA)
|
||
$ ssh-add ~/.ssh/id_rsa && rm ~/.ssh/id_rsa
|
||
|
||
When invoking `ssh-add`, it will prompt for the ssh key's passphrase if present, then the `pinentry` program will prompt and confirm for a new passphrase to use to encrypt the converted key within the gpg key store.
|
||
|
||
The migrated key should be listed in `ssh-add -l`:
|
||
|
||
$ ssh-add -l
|
||
4096 SHA256:... cardno:00060123456 (RSA)
|
||
2048 SHA256:... /Users/username/.ssh/id_rsa (RSA)
|
||
|
||
Or to show the keys with MD5 fingerprints, as used by `gpg-connect-agent`'s `KEYINFO` and `DELETE_KEY` commands:
|
||
|
||
$ ssh-add -E md5 -l
|
||
4096 MD5:... cardno:000606900360 (RSA)
|
||
2048 MD5:... /Users/username/.ssh/id_rsa (RSA)
|
||
|
||
When using the key `pinentry` will be invoked to request the key's passphrase. The passphrase will be cached for up to 10 minutes idle time between uses, to a maximum of 2 hours.
|
||
|
||
## 4.6 SSH - Windows
|
||
|
||
Begin by exporting your SSH key from GPG:
|
||
|
||
$ gpg --export-ssh-key $USERID
|
||
|
||
|
||
Copy this key to a file and keep it for later use. It represents the public SSH key corresponding to the secret key on your YubiKey. You can upload this key to any server you wish to SSH into.
|
||
|
||
To authenticate SSH sessions via our YubiKey we need to enable Gpg4Win's PuTTY integration. Create a file named `gpg-agent.conf` and place it in the directory `C:\%APPDATA%\gnupg`.
|
||
The file should contain the line `enable-putty-support`.
|
||
|
||
Then, open a terminal and run the following commands:
|
||
|
||
> gpg-connect-agent killagent /bye
|
||
> gpg-connect-agent /bye
|
||
|
||
Create a shortcut that points to `gpg-connect-agent /bye` and place it in your startup folder to make sure the agent starts after a system shutdown.
|
||
|
||
Now you can use PuTTY for public key SSH authentication. When the server asks for publickey verification, PuTTY will foward the request to GPG, whcih will prompt you for your PIN and authorize the login using your YubiKey.
|
||
|
||
### 4.6a GitHub
|
||
|
||
You can use your YubiKey to sign GitHub commits and tags. It can also be used for GitHub SSH authentication, allowing you to push, pull, and commit without your GitHub password.
|
||
|
||
Log into GitHub and upload your SSH and PGP public keys.
|
||
|
||
#### Signing
|
||
|
||
Then run the following commands:
|
||
|
||
> git config --global user.signingkey $KEYID
|
||
|
||
Make sure your user.email option matches the email associated with your PGP identity.
|
||
|
||
Now, to sign commits or tags simply use the `-S` option. GPG will automatically query your YubiKey and prompt you for your PIN.
|
||
|
||
#### Authentication
|
||
|
||
Run the following commands **(only for Windows)**:
|
||
|
||
> git config --global core.sshcommand 'plink -agent'
|
||
|
||
You can then change your repository url to:
|
||
`git@github.com:USERNAME/repository`. Any authenticated commands will be authorized by your YubiKey.
|
||
|
||
**Note:** If you encounter the error `gpg: signing failed: No secret key`, run `gpg --card-status` with your YubiKey plugged in and try the git command again.
|
||
|
||
## 4.7 Requiring touch to authenticate
|
||
|
||
Note: this is only possible on the Yubikey 4 line.
|
||
|
||
By default the Yubikey will perform key operations without requiring a touch from the user. To require a touch for every SSH connection, use the [Yubikey Manager](https://developers.yubico.com/yubikey-manager/) (you'll need the Admin PIN):
|
||
|
||
ykman openpgp touch aut on
|
||
|
||
To require a touch for the signing and encrypting keys as well:
|
||
|
||
ykman openpgp touch sig on
|
||
ykman openpgp touch enc on
|
||
|
||
The Yubikey will blink when it's waiting for the touch.
|
||
|
||
### 4.8 OpenBSD
|
||
|
||
On OpenBSD, you will need to install `pcsc-tools` and enable with `sudo rcctl enable pcscd`, then reboot in order to recognize the key.
|
||
|
||
# 5. Troubleshooting
|
||
|
||
- If you don't understand some option, read `man gpg`.
|
||
|
||
- If you encounter problems connecting to YubiKey with GPG, simply try unplugging and re-inserting your YubiKey, and restarting the `gpg-agent` process.
|
||
|
||
- If you receive the error, `gpg: decryption failed: secret key not available` - you likely need to install GnuPG version 2.x.
|
||
|
||
- If you receive the error, `Yubikey core error: no yubikey present` - make sure the YubiKey is inserted correctly. It should blink once when plugged in.
|
||
|
||
- If you still receive the error, `Yubikey core error: no yubikey present` - you likely need to install newer versions of yubikey-personalize as outlined in [Install required software](#install-required-software).
|
||
|
||
- If you receive the error, `Yubikey core error: write error` - YubiKey is likely locked. Install and run yubikey-personalization-gui to unlock it.
|
||
|
||
- If you receive the error, `Key does not match the card's capability` - you likely need to use 2048 bit RSA key sizes.
|
||
|
||
- If you receive the error, `sign_and_send_pubkey: signing failed: agent refused operation` - you probably have ssh-agent running. Make sure you replaced ssh-agent with gpg-agent as noted above.
|
||
|
||
- If you still receive the error, `sign_and_send_pubkey: signing failed: agent refused operation` - On Debian, [try](https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=835394) `gpg-connect-agent updatestartuptty /bye`
|
||
|
||
- If you receive the error, `Error connecting to agent: No such file or directory` from `ssh-add -L`, the UNIX file socket that the agent uses for communication with other processes may not be set up correctly. On Debian, try `export SSH_AUTH_SOCK="/run/user/$UID/gnupg/S.gpg-agent.ssh"`
|
||
|
||
- If you receive the error, `Permission denied (publickey)`, increase ssh verbosity with the `-v` flag and ensure the public key from the card is being offered: `Offering public key: RSA SHA256:abcdefg... cardno:00060123456`. If it is, ensure you are connecting as the right user on the target system, rather than as the user on the local system. Otherwise, be sure `IdentitiesOnly` is not [enabled](https://github.com/FiloSottile/whosthere#how-do-i-stop-it) for this host.
|
||
|
||
- If you totally screw up, you can [reset the card](https://developers.yubico.com/ykneo-openpgp/ResetApplet.html).
|
||
|
||
## 5.1 Yubikey OTP Mode and cccccccc....
|
||
|
||
The Yubikey has two configurations, one invoked with a short press, and the other with a long press. By default the short-press mode is configured for HID OTP - a brief touch will emit an OTP string starting with `cccccccc`. If you rarely use the OTP mode, you can swap it to the second configuration via the Yubikey Personalization tool. If you *never* use OTP, you can disable it entirely using the [Yubikey Manager](https://developers.yubico.com/yubikey-manager) application (note, this not the similarly named Yubikey NEO Manager).
|
||
|
||
# 6. References and similar work
|
||
|
||
* https://developers.yubico.com/yubikey-personalization/
|
||
* https://developers.yubico.com/PGP/Card_edit.html
|
||
* https://blog.josefsson.org/2014/06/23/offline-gnupg-master-key-and-subkeys-on-yubikey-neo-smartcard/
|
||
* https://www.esev.com/blog/post/2015-01-pgp-ssh-key-on-yubikey-neo/
|
||
* https://blog.habets.se/2013/02/GPG-and-SSH-with-Yubikey-NEO
|
||
* https://trmm.net/Yubikey
|
||
* https://rnorth.org/gpg-and-ssh-with-yubikey-for-mac
|
||
* https://jclement.ca/articles/2015/gpg-smartcard/
|
||
* https://github.com/herlo/ssh-gpg-smartcard-config
|
||
* http://www.bootc.net/archives/2013/06/09/my-perfect-gnupg-ssh-agent-setup/
|
||
* https://help.riseup.net/en/security/message-security/openpgp/best-practices
|
||
* https://alexcabal.com/creating-the-perfect-gpg-keypair/
|
||
* https://www.void.gr/kargig/blog/2013/12/02/creating-a-new-gpg-key-with-subkeys/
|
||
* https://evilmartians.com/chronicles/stick-with-security-yubikey-ssh-gnupg-macos
|